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Abstract

We describe Chromium, a system for manipulating streams of
graphics API commands on clusters of workstations. Chromium’s
stream filters can be arranged to create sort-first and sort-last par-
allel graphics architectures that, in many cases, support the same
applications while using only commodity graphics accelerators. In
addition, these stream filters can be extended programmatically, al-
lowing the user to customize the stream transformations performed
by nodes in a cluster. Because our stream processing mechanism
is completely general, any cluster-parallel rendering algorithm can
be either implemented on top of or embedded in Chromium. In
this paper, we give examples of real-world applications that use
Chromium to achieve good scalability on clusters of workstations,
and describe other potential uses of this stream processing technol-
ogy. By completely abstracting the underlying graphics architec-
ture, network topology, and API command processing semantics,
we allow a variety of applications to run in different environments.
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Distributed/network graphics; I.3.4 [Computer Graphics]: Graph-
ics Utilities—Software support, Virtual device interfaces; C.2.2
[Computer-Communication Networks]: Network Protocols—
Applications; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Client/Server, Distributed Applications

Keywords: Scalable Rendering, Cluster Rendering, Parallel Ren-
dering, Tiled Displays, Remote Graphics, Virtual Graphics, Stream
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1 Introduction

The performance of consumer graphics hardware is increasing at
such a fast pace that a large class of applications can no longer
utilize the full computational potential of the graphics processor.
This is largely due to the slow serial interface between the host and
the graphics subsystem. Recently, clusters of workstations have
emerged as a viable option to alleviate this bottleneck. However,
cluster rendering systems have largely been focused on providing
specific algorithms, rather than a general mechanism for enabling
interactive graphics on clusters. The goal of our work is to allow
applications to utilize more easily the aggregate rendering power of
a collection of commodity graphics accelerators housed in a cluster

of workstations, without imposing a specific scalability algorithm
that may not meet an application’s needs.

To achieve this goal, we have designed and built a system that
provides a generic mechanism for manipulating streams of graphics
API commands. This system, called Chromium, can be used as the
underlying mechanism for any cluster-graphics algorithm by having
the algorithm use OpenGL to move geometry and imagery across
a network as required. In addition, existing OpenGL applications
can use a cluster with very few modifications, because Chromium
provides an industry-standard graphics API that virtualizes the dis-
joint rendering resources present in a cluster. In some cases, the
application does not even need to be recompiled. Compatibility
with existing applications may accelerate the adoption of rendering
clusters and high resolution displays, encouraging the development
of new applications that exploit resolution and parallelism.

Chromium’s stream processors are implemented as modules that
can be interchanged and combined in an almost completely arbi-
trary way. By modifying the configuration of these stream pro-
cessors, we have built sort-first and sort-last parallel graphics ar-
chitectures that can, in many cases, support the same applications
without recompilation. Unlike previous work, our approach does
not necessarily require that any geometry be moved across a net-
work (although this may be desirable for load-balancing reasons).
Instead, applications can issue commands directly to locally housed
graphics hardware, thereby achieving the node’s full advertised ren-
dering performance. Because our focus is on clusters of commod-
ity components, we consider only architectures that do not require
communication between stages in the pipeline that are not normally
exposed to an application. For example, a sort-middle architecture,
which requires communication between the geometry and rasteri-
zation stages, is not a good match for our system.

Chromium’s stream processors can be extended programmati-
cally. This added flexibility allows Chromium users to solve more
general problems than just scalability, such as integration with an
existing user interface, stylized drawing, or application debugging.
This extensibility is one of Chromium’s key strengths. Because we
simply provide a programmable filter mechanism for graphics API
calls, Chromium can implement many different underlying algo-
rithms. This model can be thought of as an extension of Voorhies’s
virtual graphics pipeline [33], which insulates applications from the
details of the underlying implementations of a common API.

2 Background and Related Work

2.1 Cluster Graphics

Clusters have long been used for parallelizing traditionally non-
interactive graphics tasks such as ray-tracing, radiosity [5, 25], and
volume rendering [6]. Other cluster-parallel rendering efforts have
largely concentrated on exploiting inter-frame parallelism rather
than trying to make each individual frame run faster [20]. We are in-
terested in enabling fast, interactive rendering on clusters, so these
techniques tend to be at most loosely applicable to our domain.

In the last few years, there has been growing interest in using
clusters for interactive rendering tasks. Initially, the goal of these
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systems was to drive large tiled displays. Humphreys and Hanrahan
described an early system designed for 3D graphics [9]. Although
the system described in that paper ran on an SGI InfiniteReality, it
was later ported to a cluster of workstations. At first, their cluster-
based system, called WireGL, only allowed a single serial applica-
tion to drive a tiled display over a network [7]. WireGL used tra-
ditional sort-first parallel rendering techniques to achieve scalable
display size with minimal impact on the application’s performance.
The main drawback of this system was its poor utilization of the
graphics resources available in a cluster. Because it only focused on
display resolution, applications would rarely run faster on a cluster
than they would locally.

Other approaches focused on scalable rendering rates. Samanta
et al. described a cost-based model for load-balancing rendering
tasks among nodes in a cluster, eventually redistributing the re-
sulting non-overlapping pixel-tiles to drive a tiled display [29, 31].
They then extended this technique to allow for tile overlap, creat-
ing a hybrid sort-first and sort-last algorithm that could effectively
drive a single display [30]. All of these algorithms required the
full replication of the scene database on each node in the cluster,
so further work was done to only require partial replication, trad-
ing off memory usage for efficiency [28]. Although these papers
present an excellent study of differing data-management strategies
in a clustered environment, they all provide algorithms rather than
mechanisms. Applying these techniques to a big-data visualization
problem would require significant reworking of existing software.

A different approach to dataset scalability was taken by
Humphreys et al. when they integrated a parallel interface into
WireGL [8]. By posing as the system’s OpenGL driver, WireGL
intercepts OpenGL commands made by an application (or multi-
ple applications), and generates multiple new command sequences,
each represented in a compact wire protocol. Each sequence is then
transmitted over a network to a different server. Those servers man-
age image tiles, and execute the commands encoded in the streams
on behalf of the client. Finally, the resulting framebuffer tiles are
extracted and transmitted to a compositing server for display. Or-
dering between streams resulting from a parallel application is con-
trolled using the parallel immediate mode graphics extensions pro-
posed by Igehy et al [10]. WireGL can use either software-based
image reassembly or custom hardware such as Lightning-2 [32] to
reassemble the resulting image tiles and form the final output. This
approach to cluster rendering allows existing applications to be par-
allelized easily, since it is built upon a popular, industry-standard
API. However, by imposing a sort-first architecture on the resulting
application, it can be difficult to load-balance the graphics work.
Load-balancing is usually attempted by using smaller tiles, but this
will tend to cause primitives to overlap more tiles, resulting in ad-
ditional load on the network and reduced scalability. More funda-
mentally, WireGL requires that all geometry be moved over a net-
work every frame, but today’s networks are not fast enough to keep
remote graphics cards busy.

2.2 Stream Processing

Continual growth in typical dataset size and network bandwidth has
made stream-based analysis a hot topic for many different disci-
plines, such as telephone record analysis [4], multimedia, render-
ing of remotely stored 3D models [27], database queries [2], and
theoretical computer science [16]. In these domains, streams are an
appropriate computational primitive because large amounts of data
arrive continuously, and it is impractical or unnecessary to retain
the entire data set. In the broadest sense, a stream is a potentially
infinite ordered sequence of records. Applications designed to op-
erate on streams only access the elements of the sequence in order,
although it is possible to buffer a portion of a stream for more global
analysis. Any stream processing algorithm must operate on this po-

tentially infinite input set using only finite resources.
Many of the traditional techniques used to solve problems in

computer graphics can be thought of as stream processing algo-
rithms. Immediate-mode rendering is a classic example. In this
graphics model, an unbounded sequence of primitives is sent one at
a time through a narrow API. The graphics system processes each
primitive in turn, using only a finite framebuffer (and possibly tex-
ture memory) to store any necessary intermediate results. Because
such a graphics system does not have memory of past primitives,
its computational expressiveness is limited1. Owens et al. imple-
mented an OpenGL-based polygon renderer on Imagine, a pro-
grammable stream processor [17]. Using Imagine, they achieved
performance that is competitive with custom hardware while en-
abling greater programmability at each stage in the pipeline.

Mohr and Gleicher demonstrated that a variety of stylized draw-
ing techniques could be applied to an unmodified OpenGL applica-
tion by only analyzing and modifying the stream of commands [14].
They intercept the application’s API commands by posing as the
system’s OpenGL driver, in exactly the same way Chromium ob-
tains its command source. Although some of their techniques re-
quire potentially unbounded memory, some similar effects can be
achieved using Chromium and multiple nodes in a cluster.

3 System Architecture

The overall design of Chromium was influenced by Stanford’s
WireGL system [8]. Although the sort-first architecture imple-
mented by WireGL is fairly restrictive, one critical aspect of the
design led directly to Chromium: The wire protocol used to move
image tiles from the servers to the compositor is the same as
the networked-OpenGL protocol used to move geometry from the
clients to the servers. In effect, WireGL’s servers themselves be-
come clients of a second parallel rendering application, which uses
imagery as its fundamental drawing primitive. This means that the
compositing node is not special; in fact, it is just another instance
of the same network server executing OpenGL commands and re-
solving ordering constraints on behalf of some parallel client.

If we consider a sequence of OpenGL commands to be a stream,
WireGL provides three main stream “filters”. First, it can sort a
serial stream into tiles. Next, it can dispatch a stream to a local im-
plementation of OpenGL. Finally, WireGL can read back a frame-
buffer and generate a new stream of image-drawing commands. In
WireGL, these stream transformations can only be realized at spe-
cific nodes in the cluster (e.g., an application’s stream can only be
sorted). To arrive at Chromium’s design, we realized that it would
be useful to perform other transformations on API streams, and it
would also be necessary to arrange cluster nodes in a more generic
topology than WireGL’s many-to-many-to-few arrangement.

3.1 Cluster Nodes

Chromium users begin by deciding which nodes in their cluster will
be involved in a given parallel rendering run, and what communi-
cation will be necessary. This is specified to a centralized configu-
ration system as a directed acyclic graph. Nodes in this graph rep-
resent computers in a cluster, while edges represent network traffic.
Each node is actually divided into two parts: a transformation por-
tion and a serialization portion.

1Because most graphics API’s have some mechanism to force data to
flow back towards the host (i.e., glReadPixels), graphics hardware is actu-
ally not a purely feed-forward stream processor. This fact has been exploited
to perform more general computation using graphics hardware [18, 22], and
extensions to the graphics pipeline have been proposed to further generalize
its computational expressiveness [12].
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The transformation portion of a node takes a single stream of
OpenGL commands as input, and produces zero or more streams
of OpenGL commands as output. The mapping from input to out-
put is completely arbitrary. The output streams (if any) are sent
over a network to another node in the cluster to be serialized and
transformed again. Stream transformations are described in greater
detail in section 3.2.

The serialization portion of a node consumes one or more in-
dependent OpenGL streams, each with its own associated graph-
ics context, and produces a single OpenGL stream as output. This
task is analogous to the scheduler in a multitasking operating sys-
tem; the serializer chooses a stream to “execute”, and copies that
stream to its output until the stream becomes “blocked”. It then se-
lects another input stream, performs a context switch, and continues
copying. Streams block and unblock via extensions to the OpenGL
API that provide barriers and semaphores, as proposed by Igehy et
al [10]. These synchronization primitives do not block the issuing
process, but rather encode ordering constraints that will be enforced
by the serializer. Because the serializer may have to switch be-
tween contexts very frequently, we use a hierarchical OpenGL state
tracker similar to the one described by Buck et al [3]. This state
representation allows for the efficient computation of the difference
between two graphics contexts, allowing for fine-grained sharing of
rendering resources.

A node’s serializer can be implemented in one of two ways.
Graph nodes that have one or more incoming edges are realized
by Chromium’s network server, and are referred to as server nodes.
Servers manage multiple incoming network connections, interpret-
ing messages on those connections as packed representations of
OpenGL streams.

On the other hand, nodes that have no incoming edges must
generate their (already serial) OpenGL streams programmati-
cally. These nodes are called client nodes. Clients obtain their
streams from standalone applications that use the OpenGL API.
Chromium’s application launcher causes these programs to load our
OpenGL shared library on startup. Chromium’s OpenGL library
injects the application’s commands into the node’s stream trans-
former, so the application does not have to be modified to initialize
or load Chromium. If there is only one client in the graph, it will
typically be an unmodified off-the-shelf OpenGL application. For
graphs with multiple clients, the applications will have to specify
the ordering constraints on their respective streams.

3.2 OpenGL Stream Processing

Stream transformations are performed by OpenGL “Stream Pro-
cessing Units”, or SPUs. SPUs are implemented as dynamically
loadable libraries that provide the OpenGL interface, so each node’s
serializer will load the required libraries at run time and build an
OpenGL dispatch table. SPUs are normally designed as generically
as possible so they can be used anywhere in a graph.

A simple example configuration is shown in figure 1. The client
loads the tilesort SPU, which incorporates all of the sort-first
stream processing logic from WireGL. The servers use the render
SPU, which dispatches the incoming streams directly to their local
graphics accelerators. This configuration has the effect of running
the unmodified client application on a tiled display using sort-first
stream processing, giving identical semantics and similar perfor-
mance to the tiled display system described by Humphreys et al [7].
Notice that in figure 1, the graph edges originate from the tilesort
SPU, not the application itself. This convention is used because the
SPU in fact manages its own network resources, originates connec-
tions to servers, and generates traffic.

Application
Tilesort

...

Chromium Server
Render

Chromium Server
Render

Chromium Server
Render

Chromium Server
Render

Figure 1: A simple Chromium configuration. In this example,
a serial application is made to run on a tiled display using a
sort-first stream processor called tilesort.

3.3 SPU Chains

A node’s stream transformation need not be performed by only a
single SPU; serializers can load a linear chain of SPUs at run time.
During initialization, each SPU receives an OpenGL dispatch table
for the next SPU in its local chain, meaning simple SPUs can be
chained together to achieve more complex results. Using this fea-
ture, a SPU might intercept and modify (or discard) calls to one par-
ticular OpenGL function and pass the rest untouched to its down-
stream SPU. This allows a SPU, for example, to adjust the graphics
state slightly to achieve a different rendering style.

One example of such a SPU is a “wireframe style” filter. This
SPU issues a glPolygonMode call to its downstream SPU at startup
to set the drawing mode to wireframe. It then passes all OpenGL
calls directly through except glPolygonMode, which it discards,
preventing the application from resetting the drawing mode. Note
that Chromium does not require a stream to be rendered on a dif-
ferent node from where it originated; it is straightforward for the
client to load the render SPU as part of its chain. In this way, an
application’s drawing style can be modified while it runs directly
on the node’s graphics hardware, without any network traffic.

SPU chains are always initialized in back-to-front order, starting
with the final SPU in the chain. At initialization, a SPU must return
a list of all the functions that it implements. A SPU that wants to
pass a function call through to the SPU immediately downstream
can return the downstream SPU’s function pointer as its own. Be-
cause there is no indirection in this model, passing OpenGL calls
through multiple SPUs does not incur any performance overhead.
Such function pointer copying is common in Chromium; as long as
SPUs copy and change OpenGL function tables using only our pro-
vided API’s, they can change their own exported interface on the fly
and automatically propagate those changes throughout the node.

3.4 SPU Inheritance

A SPU need not export a complete OpenGL interface. Instead,
SPUs benefit from a single-inheritance model in which any func-
tions not implemented by a SPU can be obtained from a “parent”,
or “super” SPU. The SPU most commonly inherited from is the
passthrough SPU, which passes all of its calls to the next SPU in
its node’s chain. The wireframe drawing SPU mentioned in the pre-
vious section would likely be implemented this way—it would im-
plement only glPolygonMode, and rely on the passthrough SPU
to handle all other OpenGL functions. At initialization, each SPU
is given a dispatch table for its parent. When the wireframe SPU
wishes to set the drawing mode to wireframe during initialization, it
calls the passthrough SPU’s implementation of glPolygonMode.
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Application
Tilesort

Application
Tilesort

Application
Tilesort

... ...

Chromium Server

Readback

Chromium Server

Chromium Server

Chromium Server

Send

Readback Send

Readback Send

Readback Send

Chromium Server

Render

Figure 2: Chromium configured as a complete WireGL re-
placement. A parallel application drives a tiled display using
the sort-first logic in the tilesort SPU. Imagery is then read
back from the servers managing those tiles and sent to a final
compositing server for display.

3.5 Provided Tools and SPUs

Chromium provides four libraries that encapsulate frequently per-
formed stream operations. The first is a stream packing library. This
library takes a sequence of commands and produces a serialized en-
coding of the commands and their arguments. Although this library
is normally used to prepare commands for network transmission, it
can also be used to buffer a group of commands for later analysis,
as described in section 4.3. We use a very similar encoding method
to the one described by Buck et al [3]. It incurs almost no wasted
space, retains natural argument alignment, and allows a group of
command “opcodes” and their arguments to be sent with a single
call to the networking library.

Second, we provide a stream unpacking library. This library de-
codes an already serialized representation of a sequence of com-
mands and dispatches those commands to a given SPU. This library
is primarily used by Chromium’s network server to handle incom-
ing network traffic, but it can also be used by SPUs that need to
locally buffer a portion of a stream in order to perform more global
analysis or make multiple passes over that portion.

The third is a point-to-point connection-based networking ab-
straction. This library abstracts the details of the underlying trans-
port mechanism; we have implemented this API on top of TCP/IP
and Myrinet. In addition, the library can be used by SPUs and
applications to communicate with each other along channels other
than those implied by the configuration graph described in sec-
tion 3.1. This out-of-band communication allows complex com-
positing SPUs to be built, such as the one described in section 4.1.

Finally, Chromium includes a complete OpenGL state tracker.
In addition to maintaining the entire OpenGL state, this library can
efficiently compute the difference between two graphics contexts,
generating a call to a given SPU for every discrepancy found. This
efficient context differencing operation is due to a hierarchical rep-
resentation described by Buck et al [3].

In addition to these support libraries, Chromium provides a num-
ber of SPUs that can be used as is or extended to realize the de-
sired stream transformation. There are too many SPUs to list here;
a complete list can be found in the Chromium documentation at
http://chromium.sourceforge.net.

3.6 Realizing Parallel Rendering Architectures

We now present two examples of parallel rendering architectures
that can be realized using Chromium. As described by Molnar et
al., parallel rendering architectures can be classified according to
the point in the graphics pipeline at which data is “sorted” from an

...

Application

Readback Send

Application

Readback Send

Application

Readback Send

Application

Readback Send

Chromium Server

Render

Figure 3: Another possible Chromium configuration. In this
example, nodes in a parallel application render their portion of
the scene directly to their local hardware. The color and depth
buffers are then read back and transmitted to a final composit-
ing server, where they are combined to produce the final im-
age.

object-parallel distribution to an image-parallel distribution [15].

The first configuration, shown in figure 2, shows a sort-first
graphics architecture that functions identically to WireGL. As in
figure 1, we use the tilesort SPU to sort the streams into tiles.
Each intermediate server serializes its incoming streams and passes
the result to the readback SPU. The readback SPU inherits from
the render SPU using the mechanism described in section 3.4, so
the streams are rendered on the locally housed graphics hardware.
However, the readback SPU provides its own implementation of
SwapBuffers, so at the end of the frame it extracts the framebuffer
and uses glDrawPixels to pass the pixel data to another SPU. In
the figure, each pixel array is passed to a send SPU, which trans-
mits the data to a final server for tile reassembly. Each readback
SPU is configured at startup to know where its tiles should end up
in the final display; these coordinates are passed to the send SPU
using glRasterPos. The readback SPU also uses Igehy’s parallel
graphics synchronization extensions [10] to ensure that the tiles all
arrive at their destination before the final rendering server displays
its results. This final tile reassembly step could also be performed
using custom hardware such as Lightning-2 [32].

A dramatically different architecture is shown in figure 3. In
this figure, the readback SPU is loaded directly by the applica-
tions. Recall that the readback SPU dispatches all of the OpenGL
API directly to the underlying graphics hardware, so the application
running in this configuration benefits from the full performance of
local 3D acceleration. In this case, the readback SPU is configured
to extract both the color and depth buffers, sending them both to a
final compositing server along with the appropriate OpenGL com-
mands to perform a depth composite. In contrast to WireGL, this is
a sort-last architecture. In practice, having many full framebuffers
arriving at a single display server would be a severe bottleneck, so
this architecture is rarely used. In addition, when doing depth com-
positing in Chromium, it can be beneficial to write a special SPU
to perform the composite in software, because compositing depth
images in OpenGL requires using the stencil buffer in a way that is
quite slow on many architectures. A more advanced (and practical)
Chromium-based sort-last architecture is presented in section 4.1.

Because Chromium provides a virtual graphics pipeline with a
parallel interface, the application in figure 3 could be run unmodi-
fied on the architecture in figure 2 simply by specifying a different
configuration DAG. The architectures may provide different seman-
tics (e.g., the sort-last architecture cannot guarantee ordering con-
straints), but the application need not be aware of the change.
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Volume Renderer

Binary Swap Send

Volume Renderer

Binary Swap Send

Volume Renderer
Binary Swap Send

Volume Renderer

Binary Swap Send

Chromium Server

Render

Figure 4: Configuration used for a four-node version of our
cluster-parallel volume rendering system. Each client renders
its local portion of the volume using local graphics hardware.
Next, the volumes are composited using the binaryswap
SPU. The SPUs use out-of-band communication to exchange
partial framebuffers until each SPU contains one quarter of
the final image. These partial images are then sent to a single
server for display.

4 Results

In this section, we present three different Chromium usage scenar-
ios: a parallel volume renderer used to interactively explore a large
volumetric dataset, the reintegration of an application’s graphics
stream into its original user interface on a high-resolution display
device, and a stream transformation to achieve a non-photorealistic
drawing style.

4.1 Parallel Volume Rendering

Our volume rendering application uses 3D textures to store vol-
umes and renders them with view-aligned slicing polygons, com-
posited from back to front. Using Stanford’s Real-Time Shading
Language [22], we can implement different classification and shad-
ing schemes using the latest programmable graphics hardware, such
as NVIDIA’s GeForce3. Small shaders can easily exhaust these
cards’ resources; for example, a shader that implements a simple
2D transfer function and a specular shading model requires two 3D
texture lookups, one 2D texture lookup (dependent on one of the
3D lookups), and all eight register combiners.

Because we store our volumes as textures, the maximum size of
the volume that can be rendered is limited by the amount of avail-
able texture memory. In practice, on a single GeForce3 with 64 MB
of texture memory, the largest volume that can be rendered with the
shader described above is 256�256�128. In addition, the speed of
volume rendering with 3D textures is limited by the fill rate of our
graphics accelerator. While the theoretical fill rate of the GeForce3
is 800 Mpix/sec, complex fragment processing greatly decreases
the attainable performance. Depending on the complexity of the
shader being used, we achieve between 42 and 190 Mpix/sec, or
roughly 5% to 24% of the GeForce3’s theoretical peak fill rate.

Both of these limitations can be mitigated by parallelizing the
rendering across a cluster. We first divide the volume among the
nodes in our cluster. Each node renders its subvolume on locally
housed graphics hardware using the binaryswap SPU, which com-
posites the resulting framebuffers using the “binary swap” tech-
nique described by Ma et al [11]. In this technique, rendering nodes
are first grouped into pairs. Each node sends one half of its image
to its counterpart, and receives the other half of its counterpart’s im-
age. This communication uses Chromium’s connection-based net-
working abstraction, described in section 3.5. The SPUs then com-
posite the image they received with their local framebuffer. This
newly composited sub-region of the image is then split in half, a dif-
ferent pairing is chosen, and the process repeats. If there are n nodes

0 50 100
Millions of Voxels

0

5

10

15

20

Fr
am

es
 p

er
 s

ec
on

d

Isosurface

2D Transfer Function

Lit Isosurface

Lit 2D Transfer Function

Figure 5: Performance of our volume renderer as larger
volumes are used. In this graph, each node renders a
256�256�128 subvolume to a 1024�256 window. The
data points correspond to a cluster of 1, 2, 4, 8, and 16
nodes. At 16 nodes, we are rendering two copies of the full
256�256�1024 dataset.

in our cluster, after log�n� steps each node will have completely
composited 1

n of the total image. Because we are compositing trans-
parent images using Porter and Duff’s “over” operator [21], the se-
quence of pairings is chosen carefully so that blending is performed
in the correct order with respect to the viewpoint.

Our scalability experiments were conducted on a cluster of six-
teen nodes, each running RedHat Linux 7.2. The nodes contain
an 800 MHz Pentium III Xeon, a GeForce3 with 64 MB of video
memory, 256 MB of main memory, and a Myrinet network with a
maximum bandwidth of approximately 100 MB/sec. The dataset is
a 256�256�1024 magnetic resonance scan of a mouse. All of our
renderings are performed in a window of size 1024�256, ensuring
that each voxel is sampled exactly once. Table 1 shows the four
shaders we used to vary the achievable per-node performance.

Figure 4 shows the Chromium communication graph for a cluster
of four nodes. Note that a minimum of eight nodes is required to
render the full mouse volume, because each node in our cluster has
only 64 MB of texture memory. Figure 5 shows the performance
of our volume renderer as the size of the volume is scaled. In this
experiment, we rendered a portion of the mouse dataset on each
node in our cluster. The initial drop in performance is due to the
additional framebuffer reads required, but because the binary swap
algorithm keeps all the nodes busy while compositing, the graph
flattens out, and we sustain nearly constant performance as the size
of the volume is repeatedly doubled. At 16 nodes, we render two
copies of the full 256�256�1024 volume at a rate between 643
MVox/sec and 1.59 GVox/sec, depending on the shader used.

If we instead fix the size of the volume and parallelize the render-
ing, we quickly become limited by our pixel readback and network
performance. When rendering a single 256�256�128 volume split
across multiple nodes, the rendering rate rapidly becomes negli-
gible. When creating a 1024�256 image, our volume renderer’s
performance converges to approximately 22 frames per second. Be-
cause the parallel image compositing and final transmission for dis-
play happen sequentially, we can analyze this performance as fol-
lows: With 16 nodes, each node eventually extracts and sends 15

16
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Isosurface 2D Transfer Function Lit Isosurface Lit 2D Transfer Function

Shader 3D textures 2D (dependent) textures Register Combiners Single-Node Fill Rate (Mpix/sec)

Isosurface 1 0 6 190
2D Transfer Function 1 1 4 98

Lit Isosurface 2 0 8 78
Lit 2D Transfer Function 2 1 8 42

Table 1: Shaders used in our volume rendering experiments. The lit 2D transfer function shader exhausts the resources of a GeForce3.
Mouse dataset courtesy of the Duke Center for In Vivo Microscopy.

of its framebuffer, requiring four bytes per pixel. The final trans-
mission sends only 1

16 of a framebuffer at three bytes per pixel, but
because all of these framebuffer portions arrive at the same node,
we must consider the aggregate incoming bandwidth at that node,
which is a full framebuffer at three bytes per pixel. This adds up to
1.69 MB/frame, or 37.1 MB/sec. This measurement is close to our
measured RGBA readback performance of the GeForce3, which is
clearly the limiting factor for the binaryswap SPU, since our net-
work can sustain 100 MB/sec. Future improvements in pixel read-
back rate and network bandwidth would result in higher framerates,
as would an alpha-compositing mode for a post-scanout composit-
ing system such as Lightning-2.

4.2 Integration With an Existing User Interface

Normally, when Chromium intercepts an application’s graphics
commands, that application’s graphics window will be blank, with
the rendering appearing in one or more separate windows, poten-
tially distributed across multiple remote computers. Because the
interface is now separated from the visualization, this can interfere
with the productive use of some applications. To address this prob-
lem, we have implemented the integration SPU to reincorporate
remotely rendered tiles into the application’s user interface. This
way, users can apply a standard user interface to a parallel client.

This manipulation can also be useful for serial applications.
Even though the net effect is a null transformation on the appli-
cation’s stream, it can aid in driving high resolution displays. For
our experiments, we use the IBM T221, a 3840�2400 LCD. Few
graphics cards can drive this display directly, and those that can
do not have sufficient scanout bandwidth to do so at a high refresh
rate. The T221 can be driven by up to four separate synchronized
digital video inputs, so we can achieve higher bandwidth to the dis-
play using a cluster and special hardware such as Lightning-2 [32],
or a network-attached parallel framebuffer such as IBM’s Scalable
Graphics Engine (SGE) [19]. The SGE supports up to 16 one-
gigabit ethernet inputs, can double buffer up to 16 million pixels,
and can drive up to eight displays. In our tests, we used the SGE
to supply four synchronized DVI outputs that collectively drive the
T221 at its highest resolution. An X-Windows server for the SGE
provides a standard user interface for this configuration.

The integration SPU is conceptually similar to the readback
SPU in that it inherits almost all of its functionality from the
render SPU. To extract the color information from the framebuffer,
the integration SPU implements its own SwapBuffers handler,
which uses the SGE to display those pixels on the T221. The con-
figuration graph used to conduct this experiment is shown in fig-

ure 8. The application’s graphics stream is sorted into tiles man-
aged by multiple Chromium servers, each of which dispatches its
tile’s stream to the integration SPU. The integration SPU places
the resulting pixels into X regions by tunneling, meaning that the
pixels are transferred to the SGE’s framebuffer without the involve-
ment of the X server that manages the display. Because the SGE
supports multiple simultaneous writes to the framebuffer, this tech-
nique does not unnecessarily serialize tile placement. Note that the
number of tiles sent to the SGE is independent of the number of the
SGE’s outputs, so we use an 8-node cluster to drive the four outputs
at interactive rates.

The integration SPU must also properly handle changes to
the size of the application’s rendering area. When an applica-
tion window is resized, it will typically call glViewport to reset
its drawing area. Accordingly, the integration SPU overrides
the render SPU’s implementation of glViewport to detect these
changes, and adjusts the size of the render tiles if necessary. Be-
cause the tilesort SPU sorts based on a logical decomposition of
the screen, it does not need to be notified of this change2.

Although the integration SPU enables functionality that is
not otherwise possible, it is still important that it not impede in-
teractivity. For our performance experiments, we used a cluster
of eight nodes running RedHat Linux 7.1, each with two 866MHz
Pentium III Xeon CPUs, 1GB of RDRAM, NVIDIA Quadro graph-
ics, and both gigabit ethernet and Myrinet 2000 networking. One
of our cluster nodes runs the SGE’s X-windows server in addi-
tion to the Chromium server. We successfully tested applications
ranging from trivial (simple demos from the GLUT library) to a
medium-complexity scientific visualization application (OpenDX)
to a closed-source, high-complexity CAD package (CATIA).

The graph shown in figure 6 shows the average frame rate as
we scale the display resolution of the T221 from 800�600 to
3840�2400. Four curves are shown, corresponding to a cluster of
1, 2, 4, and 8 nodes. Because we want to measure only the perfor-
mance impact of the integration SPU, we rendered only small
amounts of geometry (approximately 5000 vertices per frame) us-
ing the GLUT atlantis demo. This demo runs at a much greater
rate than the refresh rate of the display, so its effect on performance
is minimal compared to the expense of extracting and transmitting
tiles.

The maximum frame rate achieved using 4 or 8 nodes is 41 Hz,
which is exactly the vertical refresh rate of the T221. Because

2Our example application uses only geometric primitives. In order for
pixel-based primitives to be rendered correctly, the tilesort SPU would
need to be notified when the window size changes. Alternately, the tilesort
SPU could be configured to broadcast all glDrawPixels calls.
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Figure 6: Performance of the GLUT “atlantis” demo using
the integration SPU to drive the T221 display at differ-
ent resolutions. Each curve shows the relationship between
performance and resolution for a given number of rendering
servers. For smaller windows, the SPU becomes limited by
the vertical refresh rate of the display (41 Hz). As the res-
olution approaches 3840�2400 (9.2 million pixels), a small
8-server configuration still achieves interactive refresh rates.

the SGE requires hardware synchronization to the refresh rate, no
higher frame rate can be achieved. For a given fixed resolution,
the integration SPU achieves the expected performance increase
as more rendering nodes are used, because this application is com-
pletely limited by the speed at which we can redistribute pixels.
Figure 7 shows this phenomenon more clearly. In this graph, the
same data are plotted showing seconds per frame rather than frames
per second. In addition, the data have been normalized by the
number of nodes used, so the quantity being measured is the pixel
throughput per node. The coincidence of the four curves shows that
there is no penalty associated with adding rendering nodes, so lin-
ear speedup is achieved until the display’s refresh rate becomes the
limiting factor. The rate at which each node can read back pixels
and send them to the SGE is given by the slope of the line, which is
approximately 12 MPix/second/node, or 48 MB/second/node. Ex-
trapolating to a very small image size, the system overhead is ap-
proximately 15 milliseconds, which indicates that the maximum
system response rate of the integration SPU is approximately
70 Hz (in the absence of monitor refresh rate limitations).

The measurements presented here give a worst-case scenario for
the integration SPU, in which it is responsible for almost 100%
of the overhead in the system. We are able to demonstrate frame
rates exceeding 40Hz using only 8 nodes, and achieve an interac-
tive 10 Hz even with each node supplying over one million pixels
per frame. In addition, if measured independently, pixel readback
rate and the SGE transfer rate can both provide bandwidths exceed-
ing 23 Mpix/sec, nearly twice what they achieve when measured
together. This leads us to believe that the system I/O bus or mem-
ory subsystem is under-performing when these two tasks are being
performed simultaneously, an effect that will likely be eliminated
with the introduction of new I/O subsystems designed specifically
for high-end servers. This is a similar contention effect to that ob-
served by Humphreys et al. when evaluating WireGL on a cluster
of SMP nodes [8].
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Figure 7: We have replotted the data from figure 6 to show
seconds per frame versus pixels per node, to show per-node
throughput. The coincidence of the four curves shows that
there is insignificant overhead to doubling the number of ren-
dering nodes, so linear speedup is achieved until the monitor
refresh rate becomes the limiting performance factor.

4.3 Stylized Drawing

For a long time, research on non-photorealistic, or “stylized”, ren-
dering focused on non-interactive, batch-mode techniques. In re-
cent years, however, there has been considerable interest in real-
time stylized rendering. Early interactive NPR systems required
a priori knowledge of the model and its connectivity [13, 26].
More recently, Raskar has shown that non-trivial NPR styles can
be achieved with no model analysis using either standard graphics
pipeline tricks [24] or slight extensions to modern programmable
graphics hardware [23].

We have developed a simple stylized rendering filter that cre-
ates a flat-shaded hidden-line drawing style. Our approach is sim-
ilar to that taken by Mohr and Gleicher [14], although we show a
technique that requires only finite storage. Hidden line drawing in
OpenGL is a straightforward multi-pass technique, accomplished
by first rasterizing all polygons to the depth buffer, and then re-
rasterizing the polygon edges. The polygon depth values are offset
using glPolygonOffset to reduce aliasing artifacts [1].

Achieving this effect in Chromium can be accomplished with a
single SPU. The hiddenline SPU packs each graphics command
into a buffer as if they were being prepared for network transport.
This has the effect of recording the entire frame into local mem-
ory. Instead of actually sending them to a server, we instead decode
the commands twice at the end of each frame, once as polygons
and once as lines, achieving our desired style. The code required
to achieve this transformation is shown in figure 9, and the visual
results are shown in figure 10. The performance impact of this SPU
is shown in figure 11.

There are three interesting notes regarding the actual implemen-
tation of a hiddenline SPU. First, the application may generate
state queries that need to be satisfied immediately and not recorded.
In order to do this, the entire graphics state is maintained using our
state tracking library, and any function that might affect the state
is passed to the state tracker before being packed. This behavior is
frequently overly cautious; most state queries are attempts to deter-
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Figure 8: Configuration used to drive IBM’s 3840�2400 T221 display using Chromium. The commercial CAD package CATIA is
used to create a tiled rendering of a jet engine nacelle (model courtesy of Goodrich Aerostructures). The tiles are then re-integrated into
the application’s original user interface, allowing CATIA to be used as designed, despite the distribution of its graphics workload on a
cluster. Due to the capacity and range of gigabit ethernet, all of the computational and 3D graphics hardware can be remote from the
eventual display.

mine some fundamental limit of the graphics system (such as the
maximum size of a texture), rather than querying state that was set
by the application itself. Robust implementations of style filters
like the hiddenline SPU would likely benefit from the ability to
disable full state tracking.

Second, the SPU does not play back the exact calls made in the
frame. Because we want to draw all polygons in the same color
(and similarly for lines), the application must be prevented from
enabling texturing, changing the current color, turning on light-
ing, changing the polygon draw style, enabling blending, chang-
ing the line width, disabling the depth test, or disabling writes to
the depth buffer. To accomplish this, a new OpenGL dispatch ta-
ble is built, containing mostly functions from the SPU immediately
following the hiddenline SPU in its chain, but with our own ver-
sions of glEnable, glDisable, glDepthMask, glPolygonMode,
glLineWidth, and all the glColor variants, which enforce these
rules. Applications which rely on complex uses of these functions
may not function properly using this SPU.

Finally, some care must be taken to properly handle vertex ar-
rays. Because the semantics of vertex arrays allow for the data
buffer to be changed (or discarded) after it is referenced, we cannot
store vertex array calls verbatim and expect them to decode prop-
erly later in the frame. Instead, we transform uses of vertex arrays
back into sequences of separate OpenGL calls. Although this could
be done by the hiddenline SPU itself, we have found this trans-
formation to be useful in other situations, so we have implemented
the vertex array filtering in a separate vertexarray SPU. This SPU
appears immediately before the hiddenline SPU in figure 10.

It should be noted that the hiddenline SPU as presented re-
quires potentially infinite storage, since it buffers the entire frame,
and therefore cannot be considered a true stream processor. There
are two possible solutions to this problem. One is to perform
primitive assembly in the hiddenline SPU, drawing each styl-
ized primitive separately. This technique does satisfy our resource
constraints (extremely large polygonal primitives can be split into
smaller ones), but would result in a significant performance penalty
for applications with a high frame rate, due to the overhead of soft-
ware primitive assembly as well as the frequent state changes.

A better solution to this problem is to use multiple cluster nodes,
as shown in figure 12. Rather than buffering the entire frame, we

void hiddenline_SwapBuffers( void )
{
/* Draw filled polygons */
super.Clear( color and depth );
super.PolygonOffset( 1.5f, 0.000001f );
super.PolygonMode( GL_FRONT_AND_BACK, GL_FILL );
super.Color3f( poly_r, poly_g, poly_b );
PlaybackFrame( modified_child_dispatch );

/* Draw outlined polygons */
super.PolygonMode( GL_FRONT_AND_BACK, GL_LINE );
super.Color3f( line_r, line_g, line_b );
PlaybackFrame( modified_child_dispatch );

super.SwapBuffers();
}

Figure 9: End-of-frame logic for a simple hidden-line style
SPU. The entire frame is played back twice, once as depth-
offset filled polygons, and once as lines. We modify the down-
stream SPU’s dispatch table to discard calls that would affect
our drawing style, such as texture enabling and color changes.

send the entire stream verbatim to two servers, one rendering the
incoming stream as depth-offset polygons, the other as lines. In-
stead of writing two new SPUs for each of these rendering styles,
we would inject the appropriate OpenGL calls into the streams be-
fore transmission. We then use the readback and send SPUs to
combine the two renderings using a depth-compositing network, as
described in section 3.6. Note that we could more economically use
our resources by rendering depth-offset polygons locally and for-
warding the stream to a single line-rendering node (or vice versa),
thereby requiring only three nodes instead of four, although this
would require a more complex implementation.

5 Discussion and Future Work

In their seminal paper on virtual graphics, Voorhies, Kirk and Lath-
rop note that providing a level of abstraction between an applica-
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Figure 10: Drawing style enabled by the hiddenline SPU. After uses of vertex arrays are filtered out, the SPU records the entire frame,
and plays it back twice to achieve a hidden-line effect. No high-level knowledge of the model is required.
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Figure 11: Performance of Quake III running a prerecorded
demo. The first 90 frames are devoted to an introductory
splash screen and are not shown here. The red curve shows
the performance achieved by the application alone. The blue
curve shows the same demo using just the vertexarray SPU,
and the green curve gives the performance of the demo ren-
dering with a hidden-line style. Despite more than a 2:1 re-
duction in speed, the demo still runs at approximately 40-50
frames per second.

tion and the graphics hardware “allows for cleaner software de-
sign, higher performance, and effective concurrent use of the dis-
play” [33]. We believe that the power and implications of these
observations have not yet been fully explored. Chromium provides
a compelling mechanism with which to further investigate the po-
tential of virtual graphics. Because Chromium provides a complete
graphics API (many of the key SPUs such as tilesort, send, and
render pass almost all of the OpenGL conformance tests), it is no
longer necessary to write custom applications to test new ideas in
graphics API processing. Also, the barrier to entry is quite low; for
example, the hiddenline SPU described in section 4.3 adds only
approximately 250 lines of code to Chromium’s SPU template.

In the future, we would like to see Chromium applied to new
application domains, especially new ideas in scalable interactive
graphics on clusters. Of particular interest is the problem of man-
aging enormous time-varying datasets, both volumetric and polyg-

Application

Hiddenline2

Chromium Server

Readback

Chromium Server

Send

Readback Send

Chromium Server

Render

Figure 12: A different usage model for achieving a hidden-
line drawing style. In this example, the filled polygon stream
and the wireframe stream are sent to two different rendering
servers and the resulting images are depth composited. This
way, no single SPU needs to buffer the entire frame, and the
system requires only finite resources.

onal. Today’s time-varying volumetric datasets can easily exceed
30 terabytes in size. We intend to build a new parallel rendering
application designed specifically for interactively visualizing these
datasets on a cluster, using Chromium as the underlying transport,
rendering, and compositing mechanism.

We are particularly interested in building infrastructure to sup-
port flexible remote graphics. We believe that a clean separation
between a scalable graphics resource and the eventual display has
the potential to change the way we use graphics every day. We
are actively pursuing a new direction to make scalable cluster-
based graphics appear as a remote, shared service akin to a network
mounted filesystem.

Most of all, we hope that Chromium will be adopted as a com-
mon low-level mechanism for enabling new graphics algorithms,
particularly for clusters. If this happens, research results in cluster
graphics can more easily be applied to existing problems outside
the original researcher’s lab.

6 Conclusions

We have described Chromium, a flexible framework for manipulat-
ing streams of graphics API commands on clusters of workstations.
Chromium’s stream processors can be configured to provide a sort-
first parallel rendering architecture with a parallel interface, or a
sort-last architecture capable of handling most of the same appli-
cations. Chromium’s flexibility makes it an ideal launching point
for new research in parallel rendering systems, particularly those
that target clusters of commodity hardware. In addition, it is likely
that Chromium’s stream-processing model can be applied to other
problems in visualization and computer illustration.
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